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Bound & scattering states

Given a particle of total energy E interacting with a potential V (x), the classical and quantum
states can be quite different
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Real potentials

Real potentials will always trend toward zero
at large values of x and so we have a much
simpler situation

When E < 0 we will have bound states with
discrete energy levels if the potential is neg-
ative anywhere in space

When E > 0 we will have an unbound sys-
tem with continuous energies and scattering
(independent of the sign of the potential!)
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Dirac delta function

The Dirac delta function is a simple po-
tential to solve and it illustrates a minimal
bound state.

It is infinitely high and narrow and it has
unit area.

When multiplied with a function it picks out
the function at a single value

δ(x) ≡

{
0, if x 6= 0

∞, if x = 0∫ +∞

−∞
δ(x)dx = 1

f (x)δ(x − a) = f (a)δ(x − a)∫ +∞

−∞
f (x)δ(x − a)dx = f (a)

∫ +∞

−∞
δ(x − a)dx = f (a)

This integral works for any limits which include the peak of the delta function.
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Delta function potential well

Consider a potential of the form

where α is a positive constant
V=-αδ(x)

x

0

V (x) = −αδ(x)

the Schrödinger equation is now and
if E < 0, there is a bound state

start with region x < 0 where the po-
tential is zero and κ > 0

the general solution is

but since the first term is unbounded
as x → −∞, we choose A = 0

Eψ = − ~2

2m

d2ψ

dx2
− αδ(x)ψ

d2ψ

dx2
= −2mE

~2
ψ = κ2ψ

κ ≡
√
−2mE

~
> 0

ψ(x) = ����
Ae−κx + Be+κx

= Be+κx , (x < 0)
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Bound state solution

In the region x > 0 we have the same
Schrödinger equation and the solution must
have the same form

this time we must choose G = 0 to have a
bounded wave function, so

but ψ(x) must be continuous, so at x = 0
we see that F = B

the energy of this state is

E = −~2κ2

2m

normalizing

ψ(x) = Fe−κx +����
Ge+κx

ψ(x) =

{
Be+κx , x ≤ 0

Be−κx , x ≥ 0

ψ(x)

x

κ
1/2

1 =

∫ +∞

−∞
|ψ(x)|2dx = 2|B|2

∫ ∞
0

e−2κxdx =
|B|2

κ
→ B =

√
κ

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I The delta function well



Bound state solution

In the region x > 0 we have the same
Schrödinger equation and the solution must
have the same form

this time we must choose G = 0 to have a
bounded wave function, so

but ψ(x) must be continuous, so at x = 0
we see that F = B

the energy of this state is

E = −~2κ2

2m

normalizing

ψ(x) = Fe−κx + Ge+κx

ψ(x) =

{
Be+κx , x ≤ 0

Be−κx , x ≥ 0

ψ(x)

x

κ
1/2

1 =

∫ +∞

−∞
|ψ(x)|2dx = 2|B|2

∫ ∞
0

e−2κxdx =
|B|2

κ
→ B =

√
κ

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I The delta function well



Bound state solution

In the region x > 0 we have the same
Schrödinger equation and the solution must
have the same form

this time we must choose G = 0 to have a
bounded wave function, so

but ψ(x) must be continuous, so at x = 0
we see that F = B

the energy of this state is

E = −~2κ2

2m

normalizing

ψ(x) = Fe−κx +����
Ge+κx

ψ(x) =

{
Be+κx , x ≤ 0

Be−κx , x ≥ 0

ψ(x)

x

κ
1/2

1 =

∫ +∞

−∞
|ψ(x)|2dx = 2|B|2

∫ ∞
0

e−2κxdx =
|B|2

κ
→ B =

√
κ

Carlo Segre (Illinois Tech) PHYS 405 - Fundamentals of Quantum Theory I The delta function well



Bound state solution

In the region x > 0 we have the same
Schrödinger equation and the solution must
have the same form

this time we must choose G = 0 to have a
bounded wave function, so

but ψ(x) must be continuous, so at x = 0
we see that F = B

the energy of this state is

E = −~2κ2

2m

normalizing

ψ(x) = Fe−κx +����
Ge+κx

ψ(x) =

{
Be+κx , x ≤ 0

Be−κx , x ≥ 0

ψ(x)

x

κ
1/2

1 =

∫ +∞

−∞
|ψ(x)|2dx = 2|B|2
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Derivative of the wave function

We mentioned previously that the wavefunction which solves the Schrödinger equation must
satisfy two conditions:

ψ is always continuous
dψ
dx is continuous except where V (x) =∞

what can this second condition tell us in the case of the delta function potential? Integrate the
Schrödinger equation through the delta function discontinuity at x = 0. Now take the limit
ε→ 0.

�
���

���

E

∫ +ε

−ε
ψ(x)dx = − ~2

2m

∫ +ε

−ε

d2ψ(x)

dx2
dx +

∫ +ε

−ε
V (x)ψ(x)dx

0

= − ~2

2m

dψ

dx

∣∣∣∣ε
−ε

+

∫ +ε

−ε
V (x)ψ(x)dx

∆

(
dψ

dx

)
=

2m

~2
lim
ε→0

∫ +ε

−ε
V (x)ψ(x)dx

The last term is usually zero, unless V (x)→∞
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Delta function discontinuity

For the delta function, this limit is
non-zero and can be calculated

For our solution

ψ(x) =

{
Be−κx , x ≥ 0

Be+κx , x ≤ 0

and

dψ

dx
=

{
−Bκe−κx , x > 0

+Bκe+κx , x < 0

Since ψ(0) = B we have

∆

(
dψ

dx

)
=

2m

~2
lim
ε→0

∫ +ε

−ε
V (x)ψ(x)dx

=
2m

~2
lim
ε→0

∫ +ε

−ε
−αδ(x)ψ(x)dx

= −2mα

~2
ψ(0) lim

ε→0

∫ +ε

−ε
δ(x)dx

= −2mα

~2
ψ(0) = −2Bκ

dψ

dx

∣∣∣∣
+

= −Bκ, dψ

dx

∣∣∣∣
−

= +Bκ

κ =
mα

~2
→ E = −~2κ2

2m
= −mα2

2~2
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Bound state properties

Thus, the negative delta-function potential has a single
bound state with wave function

and energy. There is al-
ways only one bound state for this potential, independent
of the strength of the potential α.

ψ(x) =

√
mα

~
e−mα|x |/~

2
; E = −mα2

2~2
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The finite square well

• General solution for three regions

• Applying the boundary conditions

• Even solutions

• Limiting cases
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Finite square well

-a +a x

0

I II III

-Vo

In region I, x < −a

Eψ = − ~2

2m

d2ψ

dx2

κ2ψ =
d2ψ

dx2
, κ ≡

√
−2mE

~
ψ = ����

Ae−κx + Be+κx

for the well in region II, |x | ≤ a

Eψ = − ~2

2m

d2ψ

dx2
− V0ψ

− l2ψ =
d2ψ

dx2
, l ≡

√
2m(E + V0)

~
ψ = C sin(lx) + D cos(lx)

finally, in region III, x > +a

Eψ = − ~2

2m

d2ψ

dx2

κ2ψ =
d2ψ

dx2
, κ ≡

√
−2mE

~
ψ = Fe−κx +����

Ge+κx
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dx2
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Boundary conditions

Both the wave function and its derivative must be continuous at the boundaries of the three
regions, x = −a,+a.

Let’s consider the even solutions initially, where C ≡ 0.

ψ(x) =


Be+κx , x < −a
D cos(lx), |x | < a

Fe−κx , x > +a

let z ≡ la, and z0 ≡ a
~
√

2mV0

from our defining equations

κ2 + l2 =
−2mE

~2
+

2m(E + V0)

~2

κ2 +
z2

a2
=

2mV0

~2
=

z2
0

a2

κa =
√

z2
0 − z2

at x = +a we have

Fe−κa = D cos(la)

− κFe−κa = −lD sin(la)

dividing the two equations:

κ = l tan(la)

1

a

√
z2

0 − z2 = l tan z

1

z

√
z2

0 − z2 = tan z√(z0

z

)2
− 1= tan z
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Even solutions to finite well

tan z =

√(z0

z

)2
− 1

This is a transcendental equation which de-
fines the discrete energies which are allowed
as stationary states.

0 π/2 π 3π/2 2π 5π/2 3π

z0=2
z0=4

z0=8

z
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Limiting case: deep (wide) well

and the even solutions approach

z = la =

√
2m(E + V0)

~
a

Since En + V0 is just the energy above the
bottom of the well and the width is 2a, the
even solutions (and the odd ones, of course)
approach those of the infinite square well.

If V0 →∞ then z0 →∞

zn →
nπ

2
, n = 1, 3, 5, · · ·

nπ

2a
~ ≈

√
2m(En + V0)

n2π2~2

(2a)2
≈ 2m(En + V0)

En + V0 ≈
n2π2~2

2m(2a)2
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even solutions (and the odd ones, of course)
approach those of the infinite square well.

If V0 →∞ then z0 →∞

zn →
nπ

2
, n = 1, 3, 5, · · ·

nπ

2a
~ ≈

√
2m(En + V0)

n2π2~2

(2a)2
≈ 2m(En + V0)

En + V0 ≈
n2π2~2

2m(2a)2
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Limiting case: shallow (narrow) well

As the well becomes more shallow, V0 → 0 and z0 → 0 as well.

The number of states decreases until the lowest odd bound state vanishes. However, the
ground state (lowest even state) will never vanish. There is always a bound state no matter
how shallow the well!
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