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Given a particle of total energy E interacting with a potential V/(x), the classical and quantum
states can be quite different
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Real potentials

Real potentials will always trend toward zero
at large values of x and so we have a much
simpler situation
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Real potentials

Real potentials will always trend toward zero
at large values of x and so we have a much
simpler situation

When E < 0 we will have bound states with
discrete energy levels if the potential is neg- >
ative anywhere in space

When E > 0 we will have an unbound sys-
tem with continuous energies and scattering
(independent of the sign of the potential!)
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Dirac delta function A

The Dirac delta function is a simple po-
tential to solve and it illustrates a minimal
bound state.
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Dirac delta function

The Dirac delta function is a simple po-
tential to solve and it illustrates a minimal
bound state. d(x)

It is infinitely high and narrow and it has
unit area.
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Dirac delta function

The Dirac delta function is a simple po-
tential to solve and it illustrates a minimal

bound state. 6(x) =
It is infinitely high and narrow and it has Foo
unit area. C
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Dirac delta function V

The Dirac delta function is a simple po-

tential to solve and it illustrates a minimal 0, ifx#0
bound state. 009 = i

0o, ifx=0
It .is infinitely high and narrow and it has /+006(x)dx —1
unit area. —0o0

When multiplied with a function it picks out
the function at a single value
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Dirac delta function

The Dirac delta function is a simple po-
tential to solve and it illustrates a minimal

bound state. 5(x)
It is infinitely high and narrow and it has Foo
unit area. C

When multiplied with a function it picks out

[0, ifx#£0
oo, ifx=0
d(x)dx =1

the function at a single value f(x)d(x — a) = f(a)d(x — a)
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Dirac delta function

The Dirac delta function is a simple po-
tential to solve and it illustrates a minimal

bound state. 5(x)
It is infinitely high and narrow and it has Foo
unit area. C

When multiplied with a function it picks out

[0, ifx#£0
oo, ifx=0
d(x)dx =1

the function at a single value f(x)d(x — a) = f(a)d(x — a)

/ = F(x)3(x — a)dx = f(a) / o 8(x — a)dx

—00 —0o0
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Dirac delta function \ 4

The Dirac delta function is a simple po-

tential to solve and it illustrates a minimal 0, ifx#0
bound state. 009 = i

0o, ifx=0
It .is infinitely high and narrow and it has /+Oo(5(x)dx —1
unit area. —0o0

When multiplied with a function it picks out
the function at a single value f(x)d(x — a) = f(a)d(x — a)

400 +oo
/ f(x)o(x —a)dx = f(a)/ 0(x — a)dx = f(a)

—00 —0o0
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Dirac delta function \ 4

The Dirac delta function is a simple po-

tential to solve and it illustrates a minimal 0, iifx#0
bound state. 009 = i

0o, ifx=0
It .is infinitely high and narrow and it has /+006(x)dx —1
unit area. —0o0

When multiplied with a function it picks out
the function at a single value f(x)d(x — a) = f(a)d(x — a)

400 +oo
/ f(x)o(x —a)dx = f(a)/ 0(x — a)dx = f(a)

—00 —0o0

This integral works for any limits which include the peak of the delta function.
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Consider a potential of the form
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Consider a potential of the form V(x) = —ad(x)

V=-d(x) l X
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Delta function potential well N

v

Consider a potential of the form V(x) = —ad(x)

V=-ad(x) l X

where « is a positive constant
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Consider a potential of the form V(x) = —ad(x)

V=-ad(x) l X

where « is a positive constant

the Schrodinger equation is now
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Delta function potential well i

0
Consider a potential of the form > V(x) = —ad
where « is a positive constant
the Schrodi tion i
e Schrodinger equation is now . _ﬁd%ﬁ it
omdx2 O
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Delta function potential well i

0
Consider a potential of the form g V(x)=—aé
where « is a positive constant
the Schrodinger equation is now and B2 2
if E <0, there is a bound state Ey = _771# — ad(x)y
2m dx?
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0
Consider a potential of the form g V(x)=—aé
where « is a positive constant
the Schrodinger equation is now and B2 42
if E <0, there is a bound state Ey = _771# — ad(x)y
2m dx?

start with region x < 0 where the po-
tential is zero
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Delta function potential well 3

0

Consider a potential of the form g V(x)=—aé
where « is a positive constant

the Schrodinger equation is now and B2 42

if E <0, there is a bound state Ey = _771# — ad(x)y

2m dx?
start with region x < 0 where the po- a2y omE
tential is zero e = —?w
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Delta function potential well

Consider a potential of the form

where « is a positive constant

the Schrodinger equation is now and
if E <0, there is a bound state

start with region x < 0 where the po-
tential is zero
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Delta function potential well

Consider a potential of the form

where « is a positive constant

the Schrodinger equation is now and
if E <0, there is a bound state

start with region x < 0 where the po-

tential is zero and x > 0
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Delta function potential well

Consider a potential of the form

where « is a positive constant

the Schrodinger equation is now and
if E <0, there is a bound state

start with region x < 0 where the po-
tential is zero and k > 0

the general solution is
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Delta function potential well

Consider a potential of the form

where « is a positive constant

the Schrodinger equation is now and
if E <0, there is a bound state

start with region x < 0 where the po-
tential is zero and k > 0

the general solution is
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Delta function potential well

Consider a potential of the form

where « is a positive constant

the Schrodinger equation is now and
if E <0, there is a bound state

start with region x < 0 where the po-
tential is zero and k > 0

the general solution is

but since the first term is unbounded
as x — —oo, we choose A =0

0
V=-O(5(X)l X V(x) = —ad(x)
n? d%y
EY = —5——% — ad(x)y
d*)  2mE
i
vV—2mE

K 7 >0
Y(x) = Ae™ + Bet">
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Delta function potential well

Consider a potential of the form

where « is a positive constant

the Schrodinger equation is now and
if E <0, there is a bound state

start with region x < 0 where the po-
tential is zero and Kk > 0
the general solution is

but since the first term is unbounded
as x — —oo, we choose A =0

Carlo Segre (lllinois Tech)

0
V=—O(5(X)l X V(x) = —ad(x)
h? d?y
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Bound state solution A

In the region x > 0 we have the same
Schrodinger equation and the solution must
have the same form
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Bound state solution

In the region x > 0 we have the same W(x) = Fe" 4 Ger

Schrodinger equation and the solution must
have the same form

this time we must choose G = 0 to have a
bounded wave function, so
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Bound state solution

In the region x > 0 we have the same W(x) = Fe" 4 Ger

Schrodinger equation and the solution must
have the same form

this time we must choose G = 0 to have a
bounded wave function, so

but 1(x) must be continuous, so at x = 0
we see that F = B
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Bound state solution

In the region x > 0 we have the same
Schrodinger equation and the solution must
have the same form

this time we must choose G = 0 to have a
bounded wave function, so

but 1(x) must be continuous, so at x = 0
we see that F = B

P(x) = Fe "™ + G+
Be™™ x<0
Be™ ", x>0
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Bound state solution

In the region x > 0 we have the same W(x) = Fe" 4 Ger

Schrodinger equation and the solution must

have the same form
L P(x) =
this time we must choose G = 0 to have a
bounded wave function, so
W(x)

but 1(x) must be continuous, so at x = 0
we see that F = B

Be™ ", x>0

{Bem, x <0

172
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Bound state solution

In the region x > 0 we have the same
Schrodinger equation and the solution must

have the same form
ve ! (x) =
this time we must choose G = 0 to have a
bounded wave function, so
W(x)

but 1(x) must be continuous, so at x = 0
we see that F = B

the energy of this state is

h2 K2
- 2m

Y(x) = Fe™™ + Ge*™
{Be*"x, x<0

Be™ ", x>0

172
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Bound state solution

In the region x > 0 we have the same
Schrodinger equation and the solution must

b(x) = Fe ™ 4 Ge+™

have the same form Bet"* x <0
this time we must choose G = 0 to have a e, Xz
bounded wave function, so

. W(x)
but 1(x) must be continuous, so at x = 0 '

we see that F = B
the energy of this state is

h2 K2
- 2m

normalizing

1= [ eorex

Carlo Segre (lllinois Tech) PHYS 405 - Fundamentals of Quantum Theory | The delta function well



Bound state solution

In the region x > 0 we have the same
Schrodinger equation and the solution must
have the same form

this time we must choose G = 0 to have a
bounded wave function, so

but 1(x) must be continuous, so at x = 0
we see that F = B

the energy of this state is

h2 K2
- 2m

normalizing

b(x) = Fe ™ 4 Ge+™

Be™™ x<0
Be™ ", x>0

172
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Bound state solution

In the region x > 0 we have the same
Schrodinger equation and the solution must

have the same form

this time we must choose G = 0 to have a

bounded wave function, so

but 1(x) must be continuous, so at x = 0

we see that F = B
the energy of this state is

h2 K2
- 2m

normalizing

“+o00 0
1= / |oh(x)|?dx = 2\512/ e 2y = 21
0

—00
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Bound state solution

In the region x > 0 we have the same
Schrodinger equation and the solution must

have the same form

this time we must choose G = 0 to have a

bounded wave function, so

but 1(x) must be continuous, so at x = 0

we see that F = B
the energy of this state is

h2 K2
- 2m

normalizing

b(x) = Fe ™ 4 Ge+™

Be™™ x<0
Be™ ", x>0

X
|BJ?

o0 IS B
o / [ (x)[Pdx = 2\512/ e dx = = B=Vk
0

—00
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Derivative of the wave function \ 7

We mentioned previously that the wavefunction which solves the Schrodinger equation must
satisfy two conditions:
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We mentioned previously that the wavefunction which solves the Schrodinger equation must

satisfy two conditions: _ _
1 is always continuous
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Derivative of the wave function \ 7

We mentioned previously that the wavefunction which solves the Schrodinger equation must

satisfy two conditions: _ _
1 is always continuous
dy

T is continuous except where V/(x) = oo
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Derivative of the wave function

We mentioned previously that the wavefunction which solves the Schrodinger equation must
satisfy two conditions:

1 is always continuous
T is continuous except where V/(x) = oo

what can this second condition tell us in the case of the delta function potential?
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Derivative of the wave function \

We mentioned previously that the wavefunction which solves the Schrodinger equation must
satisfy two conditions:

1 is always continuous
dy - —
%« is continuous except where V/(x) = oo

what can this second condition tell us in the case of the delta function potential?

2 g2 x
Eu) = TV v g
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Derivative of the wave function YV

We mentioned previously that the wavefunction which solves the Schrodinger equation must
satisfy two conditions:

1 is always continuous
dy - _
T is continuous except where V/(x) = oo

what can this second condition tell us in the case of the delta function potential? Integrate the
Schrodinger equation through the delta function discontinuity at x = 0.

+e€ h2 +e d2 +e
E i P(x )dX——% ;f(gx)d —I—/_ V(x)(x)dx
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Derivative of the wave function \ 7

We mentioned previously that the wavefunction which solves the Schrodinger equation must
satisfy two conditions:

1 is always continuous
dy - _
T is continuous except where V/(x) = oo

what can this second condition tell us in the case of the delta function potential? Integrate the
Schrodinger equation through the delta function discontinuity at x = 0.

E +Ew(x)dx: 2[R / +E V(%) (x)dx

e 2m ) . dx? e
R dy|© e
= —% E B + /6 V(X)’(/J(X)dX
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We mentioned previously that the wavefunction which solves the Schrodinger equation must
satisfy two conditions:
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Derivative of the wave function \ 7

We mentioned previously that the wavefunction which solves the Schrodinger equation must
satisfy two conditions:

1 is always continuous
T is continuous except where V/(x) = oo

what can this second condition tell us in the case of the delta function potential? Integrate the

Schrédinger equation through the delta function discontinuity at x = 0. Now take the limit
e — 0.

R +e 42 +e€
dx = “om ). (;i(;) dx + / V(x)(x)dx

%)

—€
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Derivative of the wave function \ 7

We mentioned previously that the wavefunction which solves the Schrodinger equation must
satisfy two conditions:

1 is always continuous
T is continuous except where V/(x) = oo

what can this second condition tell us in the case of the delta function potential? Integrate the

Schrédinger equation through the delta function discontinuity at x = 0. Now take the limit
e — 0.

+e R +e dZw(X) +e
E > X)dX——% e dx—l—/ V(x)(x)dx

2 € +e
L +/ V(x)(x)dx

2m dx e

d 2 +e
A ((X:) = h,:e“ﬂb/ V(x)y(x)dx

—€

—€
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Derivative of the wave function \ 7

We mentioned previously that the wavefunction which solves the Schrodinger equation must
satisfy two conditions:

1 is always continuous
T is continuous except where V/(x) = oo

what can this second condition tell us in the case of the delta function potential? Integrate the

Schrédinger equation through the delta function discontinuity at x = 0. Now take the limit
e — 0.

+e R +e dZw(X) +e
E > X)dX——% e dx—l—/ V(x)(x)dx

2 € +e
—i di/) +/ V(x)(x)dx

2m dx e

d 2 +e
A ((X:) = glm/ V(x)(x)dx

—€

—€

The last term is usually zero, unless V(x) — oo

Carlo Segre (lllinois Tech) PHYS 405 - Fundamentals of Quantum Theory | The delta function well



Delta function discontinuity N

For the delta function, this limit is +e
A <dw) 2m / V(x)(x)dx

non-zero and can be calculated dx | = 2 el'_%

—€
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Delta function discontinuity N

non-zero and can be calculated d< | = 2 lim V/(x)1h(x)dx

For the delta function, this limit is diy 2m . te
A _
h?2 e—>0/

—€

2m ) +e
=77 lim /aé(x)d)(x)dx

e—0 ) _.

Carlo Segre (lllinois Tech) PHYS 405 - Fundamentals of Quantum Theory | The delta function well



Delta function discontinuity

For the delta function, this limit is
non-zero and can be calculated
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h2 e—0 e
2m ) +e
= ﬁell_% /_eaé(x)d)(x)dx
2ma _ te
= —?1#(0) EI'_% _(j(X)dX
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Delta function discontinuity i

For the delta function, this limit is diy 2m +e
non-zero and can be calculated A dx ) = ﬁel'_% /_E V/(x)¥(x)dx
2m ) +e
== E||_r>72)/_€ozé(x)@b(x)dx
2ma ) +e
—?1#(0)6“_% _(j(X)dX
2ma
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Delta function discontinuity

For the delta function, this limit is
non-zero and can be calculated

For our solution

—€
Be™"*, x>0 2ma . te
Y(x) = e = —?1#(0) lim [ o(x)dx
Bet™*, x <0 =0/ ¢
2ma
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Delta function discontinuity

For the delta function, this limit is
non-zero and can be calculated

For our solution

—€
Be™ "% x>0 2ma : te
P(x) = me’ = —?1/)(0) lim [ o(x)dx
Bet™*, x <0 =0/ ¢
2ma
and -T2 ¥(0)
dy | —Bre ™, x>0
dx +Bre™™, x <0
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Delta function discontinuity

For the delta function, this limit is

non-zero and can be calculated

For our solution

B(x) = {Be‘”x, x>0

Bet™*, x <0
and

@ _J—Bre ™™, x>0
dx | +Bret™™*, x <0
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Delta function discontinuity

For the delta function, this limit is

non-zero and can be calculated

For our solution

B(x) = {Be‘”x, x>0

Bet™*, x <0
and

@ _J—Bre ™™, x>0
dx | +Bret™™*, x <0
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2ma _ te
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2ma
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Delta function discontinuity

For the delta function, this limit is

non-zero and can be calculated

For our solution

B(x) = {Be‘”x, x>0

Bet™*, x <0
and

@ _J—Bre ™™, x>0
dx | +Bret™™*, x <0

Carlo Segre (lllinois Tech)

2m te
) = h2€||_r>%/€ V(x)(x)dx
2m ) +e
=77 E||_r>72)/€ozé(x)@b(x)dx
2ma _ te
== (0) lim _cj(x)dx
2ma
=72 ¥(0) = —2Bk
= —Bk, dd)‘ = +Bk
n dx |
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Delta function discontinuity i

For the delta function, this limit is di) om +e
non-zero and can be calculated A a ) T ne el'_%/e V(x)(x)dx
2m ) +e
For our solution = — lim /aé(x)w(x)dx
h? e=0 €
Be™"* x>0 . 2ma _ +e
P(x) = {Beﬂix7 x <0 = —?1/’(0) 6"_% _f(X)dX
2ma
and = 2 ¥(0) = —2Bk
d d
dvy —Bre™™, x>0 —w = —Bk, Q’Z)‘ =+Bk
— = dx " dx |
dx +Bre™™, x <0

Since ¥(0) = B we have
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Delta function discontinuity i

For the delta function, this limit is di) om +e
non-zero and can be calculated A a ) T ne el'_%/e V(x)(x)dx
. 2m ) +e
For our solution = — lim [ —ad(x)y(x)dx
h? e=0 €
Be™"* x>0 . 2ma _ +e
P(x) = {Beﬂix7 x <0 = —?1/’(0) 6"_% _f(X)dX
2ma
and = 2 ¥(0) = —2Bk
d d
dvy —Bre™™, x>0 —w = —Bk, Q’Z)‘ =+Bk
— = dx " dx |
dx +Bre™™, x <0
Since ¥(0) = B we have - ma
v
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Delta function discontinuity i

For the delta function, this limit is di) om +e
non-zero and can be calculated A a ) T ne el'_%/e V(x)(x)dx
. 2m ) +e
For our solution = — lim [ —ad(x)y(x)dx
h? e=0 €
Be™"* x>0 . 2ma _ +e
Y(x) = {BeW, =0 = =5 0(0) lim _cz(x)dx
2ma
and = 2 ¥(0) = —2Bk
d d
dy —Bre ™, x>0 —w —Bk, ay = +Bk
—_ = dx |, dx
dx +Bre™™, x <0
Since ¥(0) = B we have o Mo E_ _hzﬁz
R - 2m
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Delta function discontinuity i

For the delta function, this limit is di) om +e
non-zero and can be calculated A a ) T ne el'_%/e V(x)(x)dx
. 2m ) +e
For our solution = — lim [ —ad(x)y(x)dx
h? e=0 €
Be™"* x>0 . 2ma _ +e
Y(x) = {BeW, =0 = =5 0(0) lim _cz(x)dx
2ma
and = 2 ¥(0) = —2Bk
d d
dy —Bre ™, x>0 —w —Bk, ay = +Bk
—_ = dx |, dx
dx +Bre™™, x <0
Since 1(0) = B we have o Mo E_ _hzﬁz B _ma2
- 2 - 2m  2R2
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Bound state properties A

Thus, the negative delta-function potential has a single
bound state with wave function
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Bound state properties A

Thus, the negative delta-function potential has a single
bound state with wave function

w(X) — \/ZﬂlioéemchVh2
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Bound state properties

Thus, the negative delta-function potential has a single

bound state with wave function and energy.
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Bound state properties

Thus, the negative delta-function potential has a single
bound state with wave function and energy. There is al-
ways only one bound state for this potential, independent
of the strength of the potential a.
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The finite square well Y
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The finite square well vV

® General solution for three regions
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The finite square well \ 7

® General solution for three regions

® Applying the boundary conditions
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The finite square well \ 7

® General solution for three regions
® Applying the boundary conditions

® Even solutions
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The finite square well

Carlo Segre (lllinois Tech)

General solution for three regions
Applying the boundary conditions
Even solutions

Limiting cases
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Finite square well

0 «—

Carlo Segre (lllinois Tech)

+a

v
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A\

Finite square well

0 — —>

v

-V t
° -a +a X

In region |, x < —a
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Finite square well

0 — —>

v

-V t
° -a +a X

In region |, x < —a

_ R dy
2m dx?

Evp =
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Finite square well

Q) — »>
| Il 1l
Vo -a - +a X
In region |, x < —a
h? d?y
EYp=——0-—F
¥ 2m dx?
2, d?y _ vV/—2mE
KY=—5, K= —r—
dx? h
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Finite square well

0 «—

>
| Il 1l
Vo -a - +a X
In region |, x < —a
h? d?y
B = oo
5 d?y _ vV/—2mE
p=25 w=YT5
dx? h
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Finite square well

0 «—

>
| Il 1l
Vo -a - +a X
In region |, x < —a
h? d?y
EYp=——0-—F
¥ 2m dx?
2, d?y _ vV/—2mE
KY=—5, K= —r—
dx? h

) = Ae™ 4 Bet
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Finite square well

0 «—

>
| Il 1l
Vo -a +a X
In region |, x < —a
h? d?y
EYp=——0-—F
¥ 2m dx?
2, d?y _ vV/—2mE
KY=—5, K= —r—
dx? h

) = Ae™ 4 Bet

Carlo Segre (lllinois Tech)

for the well in region Il, |x| < a
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Finite square well

for the well in region Il, |x| < a

Q) — >
| Il 1l h2 d2’l/}
Ey = -V
V=52~ VoY
Vo -a +a  x
In region |, x < —a
n? d?
Ep— 129
2m dx?
2y PV VomE
dx?’ h
W = Ae= + Be™
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Finite square well

0 =

v

-V t
° -a +a X

In region |, x < —a

h2 d2y)
BV =—omde
2, d% _ V/—2mE
R =-——o k=L =

Carlo Segre (lllinois Tech)

for the well in region Il, |x| < a

h2 d24)
B = omaa oY
d?i 2m(E + Vo)
— 2 _ = Y W = 7
P dx?’ I= h
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Finite square well

0 — >
| Il 1l
Ey =
_ /21/, -
Vo -a +a X Y=
In region |, x < —a
h? d?y
EYp=——0-—F
¥ 2m dx?
K2 = ﬂ k= v—2mE
dx?’ h
) = Ae=" 4 BethX
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h2 d24)
=LV

2m dx? oy
d*yp [ 2m(E + Vo)
dx?’ N h

Csin(Ix) + D cos(Ix)
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Finite square well

0 «—

In region |, x < —a

h2 d2y)

EY = —oma
2 dzw _ V—2mE
V=g FE T

w_M_F Be—l—ﬁx
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/\ e
_/21/,:7

_VO -a ) +a ’ ¢ = Csin(/x) +

2m(E + Vo)
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Finite square well

0 «—

In region |, x < —a

2 a2
Ep=— Y
¥ 2m dx?
,  d% _ J2mE
p=2Y k=Y
dx? h

Carlo Segre (lllinois Tech)

for the well in region Il, |x| < a

h2 d24)
B = omaa oY
d?i 2m(E + Vo)
— 2 _ = Y W = 7
P dx?’ I= h

1 = Csin(Ix) + D cos(/x)

finally, in region lll, x > +a
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Finite square well

0 «—

In region |, x < —a

for the well in region Il, |x| < a

h2 d24)
B = omaa oY
d?i 2m(E + Vo)
— 2 _ = Y W = 7
P dx?’ I= h

1 = Csin(Ix) + D cos(/x)

finally, in region lll, x > +a

Ep— I R d%
2m dx? Ep=—o—2
, . d% _ V2mE
vEge RETTR
) = Ae= 4 Bt
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Finite square well

0 =

In region |, x < —a

for the well in region Il, |x| < a

h2 d24)
B = omaa oY
d?i 2m(E + Vo)
— 2 _ = Y W = 7
P dx?’ I= h

1 = Csin(Ix) + D cos(/x)

finally, in region lll, x > +a

h? d?y 2 2
Ep=——— Eqb:_idw
2m dx 2m dx2
2w _ d2¢ o = v —2mE ) dzi/) B /—OmE
dx?’ h V=g RS TR
1/} :Ae%—l— Be—l—){X
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Finite square well

for the well in region Il, |x| < a

0 ~— -
| I Il 2 Py
Ep=—9Y
v 2m dx? oy
— 2= dzi | = 2m(E + Vo,)
A N g 5T
Vo -a +a X 1 = Csin(Ix) 4+ D cos(/x)
In region |, x < —a finally, in region Ill, x > +a
h? d?y 2 2
Ey = — 5= Ey = _hidiw
2m dx 2m dx?
2, d2¢ Y —2mE dzi/) —_2mE
W= k=Y W= TV V2mE
dx h dx?’ h
Y = Ae™ + Bt Y = Fe ™ 4 Ge™"™
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Finite square well

for the well in region Il, |x| < a

0 ~— -
| I Il 2 Py
Ep=—9Y
v 2m dx? oy
— Py = dzi | = v2m(E + Vo)
A N g 5T
Vo -a +a X 1 = Csin(Ix) 4+ D cos(/x)
In region |, x < —a finally, in region Ill, x > +a
h? d?y 2 2
Eqp =—c—— E¢ — _hidiw
2m dx 2m dx?
2, d2¢ Y —2mE dzi/) —_2mE
W= k=Y W= TV V2mE
dx h dx?’ h
Y = Ae=" 4 Betr> Y = Fe "™ 4 Ge™™
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Boundary conditions vV

Both the wave function and its derivative must be continuous at the boundaries of the three
regions, x = —a, +a.
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Boundary conditions V

Both the wave function and its derivative must be continuous at the boundaries of the three
regions, x = —a, +a. Let's consider the even solutions initially, where C = 0.
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Boundary conditions V

Both the wave function and its derivative must be continuous at the boundaries of the three

regions, x = —a, +a. Let's consider the even solutions initially, where C = 0.
Betrx, x < —a
(x) = < Dcos(Ix), |x| < a
Fe=rx, X > +a
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Boundary conditions V

Both the wave function and its derivative must be continuous at the boundaries of the three
regions, x = —a, +a. Let's consider the even solutions initially, where C = 0.
at x = +a we have

Betrx, X < —a
Y(x) = § Dcos(Ix), |x|<a Fe™"? = D cos(/a)
Fe=rx, x> +a
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Boundary conditions V

Both the wave function and its derivative must be continuous at the boundaries of the three
regions, x = —a, +a. Let's consider the even solutions initially, where C = 0.
at x = +a we have

Bettx,  x< —a
Y(x) = § Dcos(Ix), |x|<a Fe™"? = D cos(/a)
Fe™ "X, X > +a — kFe " = —IDsin(/a)
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Boundary conditions \d

Both the wave function and its derivative must be continuous at the boundaries of the three
regions, x = —a, +a. Let's consider the even solutions initially, where C = 0.
at x = +a we have

Bettx,  x< —a
Y(x) = § Dcos(Ix), |x|<a Fe™"? = D cos(/a)
Fe™ "X, X > +a — kFe " = —IDsin(/a)

dividing the two equations:
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Boundary conditions \d

Both the wave function and its derivative must be continuous at the boundaries of the three
regions, x = —a, +a. Let's consider the even solutions initially, where C = 0.
at x = +a we have

Bettx,  x< —a
Y(x) = § Dcos(Ix), |x|<a Fe™"? = D cos(/a)
Fe™ "X, X > +a — kFe " = —IDsin(/a)

dividing the two equations:
k = Itan(/a)
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Boundary conditions

Both the wave function and its derivative must be continuous at the boundaries of the three

regions, x = —a, +a.

Be+nX’

x < —a
(x) = < Dcos(Ix), |x| < a
Fe=rx, X > +a

let z=la, and z0 = 7v/2mVp

Carlo Segre (lllinois Tech) PHYS 405 -

Let’s consider the even solutions initially, where C = 0.

at x = +a we have

Fe—"2

— kFe "2

D cos(/a)
—ID sin(/a)

dividing the two equations:

k = Itan(/a)
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Boundary conditions

\d

Both the wave function and its derivative must be continuous at the boundaries of the three

regions, x = —a, +a.
Betrx, x < —a
(x) = < Dcos(Ix), |x| < a
Fe=rx, X > +a

let z=la, and z0 = 7v/2mVp
from our defining equations

Carlo Segre (lllinois Tech)

PHYS 405 -

Let’s consider the even solutions initially, where C = 0.

at x = +a we have

Fe™" =

—Ka __

D cos(/a)

— kFe —ID sin(/a)

dividing the two equations:
k = Itan(/a)

Fundamentals of Quantum Theory | The finite well



Boundary conditions \ 4

Both the wave function and its derivative must be continuous at the boundaries of the three

regions, x = —a, +a. Let's consider the even solutions initially, where C = 0.
at x = +a we have
Betrx, x < —a
(x) = < Dcos(Ix), |x| < a Fe™"? = D cos(la)
Fe—r, x> +a — kFe " = —IDsin(/a)
let z = la, and zo = 2/2mVj dividing the two equations:
from our defining equations r = Itan(la)
—2mE  2m(E + V
/432 + I2 — + ( 0)
h? h?
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Boundary conditions \ 4

Both the wave function and its derivative must be continuous at the boundaries of the three

regions, x = —a, +a. Let's consider the even solutions initially, where C = 0.
at x = +a we have
Betrx, x < —a
(x) = < Dcos(Ix), |x| < a Fe™"? = D cos(la)
Fe—r, x> +a — kFe " = —IDsin(/a)
let z = la, and zo = 2/2mVj dividing the two equations:
from our defining equations r = Itan(la)
—2mE  2m(E + )
2, 2 _
RO+ = A2 + h2
. 2!77\/0
==
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Boundary conditions \ 4

Both the wave function and its derivative must be continuous at the boundaries of the three

regions, x = —a, +a. Let's consider the even solutions initially, where C = 0.
at x = +a we have
Betrx, x < —a
—Kka __
(x) = < Dcos(Ix), |x| < a Fe™"% = D cos(la)
_ —Ka _ _ .
Fe—r, x> +a kFe ID sin(/a)
let z = la, and zy = 2, 2mVo dividing the two equations:
from our defining equations r = Itan(la)
W2 = —2mE n 2m(E + W)
B2 h2
2y 22 _2mVy 7
a2 h? a2
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Boundary conditions \ 4

Both the wave function and its derivative must be continuous at the boundaries of the three

regions, x = —a, +a. Let's consider the even solutions initially, where C = 0.
at x = +a we have
Betrx, x < —a
—Kka __
(x) = < Dcos(Ix), |x| < a Fe™"% = D cos(la)
_ —Ka - _ H
Fe—r, x> +a kFe ID sin(/a)
let z = la, and zy = 2, 2mVo dividing the two equations:
from our defining equations r = Itan(la)
W2 = —2mE n 2m(E + Vo)
h? h?
2y 2 2mVy 7
a2 h? a2
ka= /28 — z?
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Boundary conditions \ 4

Both the wave function and its derivative must be continuous at the boundaries of the three

regions, x = —a, +a. Let's consider the even solutions initially, where C = 0.
at x = +a we have
Betrx, x < —a
—Kka __
(x) = < Dcos(Ix), |x| < a Fe™"% = D cos(la)
_ —Ka - _ H
Fe—r, x> +a kFe ID sin(/a)
let z = la, and zy = 2, 2mVo dividing the two equations:
from our defining equations r = Itan(la)
1
2, 2 _ —2mE  2m(E + ) =\/z3 — 22 =Itanz
K™ 41" = 2 + 2 a
2y 2 2mVy 7
a2 h? a2
ka= /28 — z?
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Boundary conditions

\d

Both the wave function and its derivative must be continuous at the boundaries of the three

regions, x = —a, +a.
Betrx, x < —a
(x) = < Dcos(Ix), |x| < a
Fe=rx, X > +a

let z=la, and z0 = 7v/2mVp
from our defining equations

—2mE  2m(E + )
2 2 _
RO+ 7= A2 + h2
2 omV. 2
ot 2%
a h? a2
ka= /28 — z?

Carlo Segre (lllinois Tech)
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Let’s consider the even solutions initially, where C = 0.

at x = +a we have

Fe™" =

—Ka __

D cos(/a)

— kFe —ID sin(/a)

dividing the two equations:
k = Itan(/a)

\/23—22 =/tanz
\/23—22 =tanz

NIlRFRY|—
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Boundary conditions \d

Both the wave function and its derivative must be continuous at the boundaries of the three
regions, x = —a, +a. Let's consider the even solutions initially, where C = 0.
at x = +a we have

Betrx, X< —a
Y(x) = § Dcos(Ix), |x|<a Fe™"? = D cos(/a)
Fe™ "X, X > +a — kFe " = —IDsin(/a)
let z = la, and zg = %\/m dividing the two equations:

from our defining equations r = Itan(la)

1
> o —2mE  2m(E + V) =\/z3 — 22 =Itanz
K+ 7= 2 + 2 a
L Sy
5 22_2mV0_zg VA —Z =tanz
rRT TR T2
20\ 2
2 _ 2 (—) —1=tanz
Ka=1\/z5 —z z
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Even solutions to finite well \ 74

2
tanz = <E) -1
V4
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Even solutions to finite well \ i

This is a transcendental equation which de-
20)2 1 fines the discrete energies which are allowed

tanz = <; as stationary states.
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Even solutions to finite well A

This is a transcendental equation which de-
20\ 2 1 fines the discrete energies which are allowed
) N as stationary states.

2n 5n/2 3n
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Limiting case: deep (wide) well V

If Vo — oo then zg — ¢
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Limiting case: deep (wide) well V

If Vo — oo then zg — oo

and the even solutions approach

Carlo Segre (lllinois Tech) PHYS 405 - Fundamentals of Quantum Theory | The finite well



Limiting case: deep (wide) well V

If Vo — oo then zg — oo

and the even solutions approach Zp — n—;, n=13,5-.--
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Limiting case: deep (wide) well V

If Vo — oo then zg — oo

and the even solutions approach Zp — n—;, n=13,5-.--
v/2m(E 4+ V,
7 — 3= m(h+0)3
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Limiting case: deep (wide) well V

If Vo — oo then zg — oo

and the even solutions approach Zp — n—;, n=13,5-.--
v/2m(E 4+ V,
7 — 3= Ma

h M b~ /2m(E + V
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Limiting case: deep (wide) well v}"

If Vo — oo then zg — oo

and the even solutions approach Zp — n—;, n=13,5-.--
\/2m(E—|— Vo)
z=la=+*—————""2a nw
h o~ V2m(E, + V)
a

nr2h

2
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Limiting case: deep (wide) well N

If Vo — oo then zg — oo

and the even solutions approach

\/2m(E + Vo)

z=la=+———"23

h

Zn— o, n=135.-

nm
—h=~v2m(E, + V
2tV m(E, + W)

n?m2h?

n?m2h?
Ent Vor ———
TR Ry
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Limiting case: deep (wide) well

<

If Vo — oo then zg — oo

and the even solutions approach

\/2m(E + Vo)

z=la=+———"23

h ’21;71 ~ /2m(E, + Vo)
Since E, + Wy is just the energy above the 22 h2
bottom of the well and the width is 2a, the ~2m(E, + Vo)

Zn— o, n=135.-

. (2a)2
even solutions (and the odd ones, of course) 2272
P n-m
approach those of the infinite square well. En+Vor ———
2m(2a)?
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Limiting case: shallow (narrow) well \i

As the well becomes more shallow, V; — 0 and z; — 0 as well.
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Limiting case: shallow (narrow) well \i

As the well becomes more shallow, V; — 0 and z; — 0 as well.

The number of states decreases until the lowest odd bound state vanishes.
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Limiting case: shallow (narrow) well V

As the well becomes more shallow, V; — 0 and z; — 0 as well.

The number of states decreases until the lowest odd bound state vanishes.
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Limiting case: shallow (narrow) well V

As the well becomes more shallow, V; — 0 and z; — 0 as well.

The number of states decreases until the lowest odd bound state vanishes.
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Limiting case: shallow (narrow) well V

As the well becomes more shallow, V; — 0 and z; — 0 as well.

The number of states decreases until the lowest odd bound state vanishes. However, the

ground state (lowest even state) will never vanish. There is always a bound state no matter
how shallow the well!
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